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Abstract

In this work, we propose a down-scaled version of the
Self-Supervised Contrastive Learning framework SimCLR,
tailored for the CIFAR-10 dataset and using a less complex
base model, ResNet18. Our approach adapts contrastive
learning techniques for environments with limited compu-
tational resources and smaller datasets. We investigate the
effect of data augmentations and batch sizes on the learn-
ing capabilities of the model. The findings suggest that con-
trastive learning can still yield significant improvements in
feature representations and classification accuracy, offer-
ing a promising avenue for efficient learning in constrained
scenarios. Finally, we use Vision Transformers (ViTs) to ex-
tract features, and we found encouraging results for future
investigation.

1. Introduction
Self-Supervised Learning [1] (SSL) has emerged as a

powerful paradigm in machine learning, especially for tasks
where labeled data is scarce or expensive to obtain, In the
context of medical imaging, where the cost of annotating
data is significantly high, the participation of human ex-
perts becomes imperative. To illustrate the magnitude of
this challenge, consider the ImageNet dataset. If an indi-
vidual were to annotate images at a rate of one per minute
without any breaks for two years, including essential activ-
ities like sleeping and eating, it would still require 22 years
and 10 months to complete the task1.

The idea behind SSL is to extract and learn representa-
tions from data itself. This is done by defining a pretext-task
where a Deep Learning model try to learn representations
about the unlabeled data by trying to solve this pretext-task.
The only reason of defining a pretext-task is to learn repre-
sentation. A pretext-task apply a transformation to the in-
put data, An example of such transformations includes rota-

*Equal contribution
1https://www.pinecone.io/learn/series/image-

search/imagenet/

tions [11] or jigsaw transformations [10]. The Deep Learn-
ing model objective is to predict characteristics of the trans-
formation from the transformed input data. Subsequently,
the same Deep Learning model can be used in downstream
tasks, such as classification, object detection in a Computer
Vision view, with only a fine-tuning step required. Figure 1
summaries the idea behind SSL with pretext-tasks.

Figure 1. Self-Supervised Learning with pretext-tasks overview.

SSL techniques, particularly those based on Contrastive
Learning, have shown remarkable success in learning ro-
bust feature representations from unlabeled data. Sim-
CLR, a leading framework in this domain, leverages large-
scale datasets and complex models to learn representa-
tions that are transferable to various tasks. However, the
application of such frameworks in resource-constrained
environments remains a challenge. Our study explores
the implementation of SimCLR on the CIFAR-10 dataset
with ResNet18 as the base encoder. Finally, we trained
three Vision Transformer (ViT) models on four classes
of ImageNet (5200 images) to see if the properties of
ViT will help extract good representations. We de-
tail our methodology, the challenges faced, and the re-
sulting performance enhancements achieved through Self-
Supervised Learning. The source code can be accessed at
https://github.com/mKabouri/contrastive-learning.

2. Related Work
The advancement of Self-Supervised Learning (SSL) has

been crucial in utilizing unlabeled data to learn meaning-
ful representations. The SSL domain has seen a shift from
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heuristic approaches to methods that enable models to un-
derstand data semantics autonomously. One of the primary
drivers of this shift has been contrastive learning, which
has been effective in differentiating between distinct data
instances [4, 7, 8].

PIRL, for Pretext-Invariant Representation Learning by
Misra et al. [8], used Jigsaw as a pretext-task. The Jigsaw
task involves dividing the image into nine patches and intro-
ducing perturbations by randomly permuting these patches.
Earlier studies employed the Jigsaw [10] task as a pretext-
task, involving predicting the permutation from the per-
turbed input image. This necessitates the learner to build
a representation that is covariant to the introduced pertur-
bation. Misra et al. [8] incorporate the established Jigsaw
pretext-task in a manner that promotes the invariance of im-
age representations to the perturbation of image patches.
Moreover, PIRL uses a memory bank of negative samples
to be used in the contrastive learning.

SimCLR by Chen et al. [4] marked a significant mile-
stone by demonstrating that the choice of data augmenta-
tions and architectural considerations could lead to repre-
sentations rivaling those obtained by supervised learning.
The framework’s ability to scale with increased batch sizes
opened up new directions in training deeper models with
large datasets. However, the reliance on large batch sizes
poses challenges in resource-constrained scenarios, moti-
vating the exploration of more efficient training methods.

Complementing the contrastive paradigm, He et al.’s
MoCo [7] introduced the concept of a momentum-based
moving average encoder, reducing the necessity for large
batch sizes and enabling a more accessible entry point for
SSL in environments with limited computational capabil-
ity. This approach aligns with our interest in adapting SSL
methods for smaller datasets and less powerful models.

While contrastive methods have dominated the SSL
landscape, alternative approaches like BYOL [6] offer a dif-
ferent perspective by eliminating the need for negative pairs
in the learning process. This non-contrastive approach,
along with clustering-based methods like those proposed
by Caron et al. [2], showcases the breadth of strategies in
the field and informs our understanding of the versatility of
SSL.

Our investigation is situated in this context of expand-
ing SSL beyond large-scale environments. By integrating
insights from leading methods and adapting them to a con-
strained setting, our work seeks to contribute to the democ-
ratization of SSL, making it more applicable and relevant to
a wider array of real-world scenarios where computational
resources and labeled data are limited.

3. Methodology

3.1. Contrastive Learning Framework

Our research adapts the SimCLR framework to a more
accessible computational setting, utilizing a scaled-down
version that employs a ResNet18 model and the CIFAR-
10 dataset. The primary goal is to maintain the essence of
contrastive learning while adjusting the scale to suit envi-
ronments with limited resources.

Contrastive learning involves learning to encode similar
(positive) pairs closer together in the representation space
while pushing dissimilar (negative) pairs further apart. This
objective is realized through a contrastive loss function,
which operates on pairs of augmented images derived from
the same source image, referred to as positive pairs, and
augmented images from different source images, or nega-
tive pairs. The challenge lies in selecting augmentations
that preserve the critical features of the images while pro-
viding enough variation to facilitate robust learning.

In our framework, we generate positive pairs through a
set of stochastic data augmentation techniques, including
random cropping, horizontal flipping and color jittering.
Each image in a batch is passed through these augmenta-
tions to create two correlated views, which the model then
projects into a shared representation space using a convolu-
tional neural network (resnet18) followed by a multi-layer
perceptron (MLP). The contrastive loss is applied to these
representations, pulling together the embeddings of positive
pairs and pushing apart those of negative pairs across the
batch.

The innovation of our approach lies in the adaptation
of the contrastive learning process for smaller datasets and
models. By fine-tuning the balance between model capac-
ity and dataset complexity, we demonstrate the potential of
self-supervised learning even in settings that traditionally
lack the scale of data or computational power presumed
necessary for such tasks.

Figure 2. Visualization of the contrastive learning process with
positive and negative pairs.
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The effectiveness of our model is further explored
through various experiments, assessing the quality of the
learned representations and their transferability to down-
stream tasks.

3.2. Contrastive Learning Process

The contrastive learning process is graphically repre-
sented in figure 2, which encapsulates the core idea of
this self-supervised approach. For each data example x,
two correlated views x̃i and x̃j are generated by applying
two distinct augmentation transformations sampled from
the same family T . These views are then fed into the base
encoder network f(·) to obtain representations hi and hj . A
projection head g(·) maps these representations to the space
where the contrastive loss is applied.

Figure 3. The contrastive learning framework, where two aug-
mented views of the same image are processed through an encoder
and a projection head to maximize agreement. Adapted from [4].

The objective is to maximize agreement between the
projections zi and zj of the positive pair, while minimizing
it for negative pairs. The contrastive loss function em-
ployed, typically a variant of Noise Contrastive Estimation
(NCE), encourages the encoder to learn invariant features
under the defined augmentations.

After training, the projection head g(·) is discarded, and
the encoder f(·), along with its output representations h, is
utilized for downstream tasks. This design ensures that the
learned representations are transferable and beneficial for
subsequent classification or recognition tasks.

3.3. Contrastive Loss Function

The Contrastive Loss function is the key component of
our framework, directing the model to distinguish between
similar (positive) and dissimilar (negative) pairs. For a
given positive pair of augmented images, zi and zj , the loss
function is formulated as follows:

Li,j = − log

(
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

)

In this equation:

• sim(zi, zj) is the cosine similarity between the rep-
resentations zi and zj , which is computed as the dot
product between the normalized vectors of zi and zj .

• τ is the temperature scaling parameter, it is a crucial
hyperparameter that adjusts the separation of positive
pairs from negative ones.

• The denominator sums over all negative pairs, ensur-
ing that zi is contrasted with every other representation
in the batch except for itself. The indicator function
1[k ̸=i] is 1 for all k ̸= i and 0 otherwise, preventing a
trivial solution where all representations collapse into
a single point.

The contrastive loss hence encourages the model to pull
together the representations of positive pairs while pushing
apart those of negative pairs. This self-supervised task en-
sures that the model learns robust feature representations
that are beneficial for downstream tasks such as classifica-
tion, even in the absence of explicit labels.

4. Dataset and Preprocessing

Our framework operates on the CIFAR-10 dataset,
which comprises 60 000 images of dimensions 32×32,
categorized into ten classes. 50 000 of those images are in
the training set and 10 000 in the test set.

Data augmentation serves an important role in the
context of contrastive learning, particularly when dealing
with diverse image datasets. The objective is to simulate
realistic transformations that an image might naturally
encounter. This approach is guiding the model to discern
robust features that are invariant to such changes and to
abstract away misleading cues. For instance, in a dataset
where images of cats are frequently accompanied by
grass, the model might erroneously associate the green
background with the concept of ’cat’. Through strategic
augmentations—such as color jittering—our method aims
to mitigate this bias by diminishing the model’s reliance on
color as a distinguishing feature. By doing so, the model
is encouraged to focus on more stable and generalizable
attributes.

The data augmentation strategy implemented is repre-
sented in algorithm 1.
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Algorithm 1 Selection of a data augmentation composition

r ← select random value in [0, 1[
if r < 0.5 then

return Compose([
Crop(scale=(0.7, 1.0), ratio=(0.8, 1.2)),
Resize(size=ORIGINAL SIZE),
RandomHorizontalFlip(proba=0.3)

])
else

return Compose([
RandomHorizontalFlip(0.3),
ColorJitter(brightness=0.1, contrast=0.1, satura-

tion=0.1, hue=0.05)
])

end if

The algorithm 1 dynamically constructs an augmenta-
tion pipeline by random selection, ensuring that each image
is exposed to a range of transformations. This variability
is crucial for self-supervised learning, where the model is
encouraged to learn invariant and discriminative features
without relying on labels.

To preprocess the images, we first resize them to a uni-
form dimension of 224×224 to accommodate the architec-
ture of our downscaled SimCLR model (and thus the lay-
ers of the resnet18 models). We then normalize the images
based on the calculated mean and standard deviation values
across the dataset, which aids in model convergence by en-
suring that the input data distribution is centered and scaled
appropriately.

Figure 4. Original vs. Random Crop

Figure 5. Original vs. Color Jitter & Horizontal Flip

Figures 4 and 5 illustrate the effect of the selected trans-
formations on sample images. Random cropping and resiz-

ing induce spatial variability, while color jittering and hori-
zontal flipping simulate changes in color dynamics and ori-
entation, respectively. These transformations are carefully
chosen and fine-tuned to ensure that the model learns from
meaningful alterations without being misled by overly ag-
gressive distortions that could degrade the learning process.

4.1. Model Architecture

Our model architecture is inspired by the Siamese net-
work design, which is particularly effective for learning
from pairs of examples. It is structured to employ a
ResNet18 base encoder followed by a projection head,
which consists of fully connected layers. This setup is piv-
otal in the contrastive learning framework, as it serves to
encode the input images into a representation space where
contrastive loss can be effectively applied.

The ResNet18 encoder captures the essential features of
the input images through its deep residual learning frame-
work. This choice of network is due to its ability to learn
rich representations with a relatively low computational de-
mand, making it suitable for down scaled applications like
ours. The encoder transforms each input image into a fea-
ture representation hi, which encapsulates the informative
patterns necessary for distinguishing between different im-
ages.

The projection head further maps these representations
into a space where the contrastive loss can maximize the
agreement between different augmentations of the same im-
age and minimize it between different images. The projec-
tion head consists of multiple layers, each adding a level of
abstraction to the representation, culminating in the output
zi, which is used for the contrastive loss calculation.

This architectural choice facilitates the learning of rep-
resentations that are invariant to the augmentations applied
to the input images, which is a core objective of contrastive
learning methods. The figure 6 below illustrates the flow of
data through our model.

Figure 6. The Siamese network architecture with a ResNet18 en-
coder and a projection head.
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4.2. Model Training

The training process is a critical component of our im-
plementation, focusing on optimizing the encoder and the
projection head to minimize contrastive loss. The Adam
optimizer was chosen for its efficiency, simplicity of imple-
mentation and its adaptive learning rate capabilities, which
are crucial for the convergence of our model.

Our training algorithm operates on batches of data, thus
choosing an appropriate batch size is very important for the
convergence of our model. It not only influences the stabil-
ity and speed of the training process but also affects the gen-
eralization ability of the model. A larger batch size provides
more negatives samples and more accurate estimate of the
gradient, but it also requires more computational resources
and can lead to a sharper, possibly less generalizable min-
ima. Our experiments underscore the critical balance re-
quired in choosing a batch size that facilitates a steady de-
cline in loss, ensuring efficient model training without com-
promising the quality of the learned representations, the re-
sults are shown later in the paper.

We apply two distinct augmentations to each image to
generate a pair of correlated views. These augmented im-
ages are then fed into the model, which computes their rep-
resentations. The contrastive loss is calculated for each pair,
encouraging the model to learn to minimize the distance be-
tween representations of augmentations from the same im-
age while maximizing the distance between different im-
ages. The batch loss is the average of these contrastive
losses, which is used to perform a gradient descent step to
update the model parameters.

The pseudocode for our training process is outlined in
Algorithm 2, which details the operations performed in each
training epoch.

Algorithm 2 Training process

for batch in train data do
batch loss← 0
for k in range(len(batch)) do
augm image[2k]← augmentation1(batch[k])
augm image[2k + 1] ←
augmentation2(batch[k])
z[2k], z[2k + 1] ←
model(augm image[2k], augm image[2k + 1])

end for
for k ∈ range(len(batch)) do

Calculate L[2k, 2k + 1] and L[2k + 1, 2k]
end for
batch loss← 1

2∗len(batch)
∑len(batch)

k=0 L[2k, 2k+1]+

L[2k + 1, 2k]
Update encoder and projection head

end for

The evolution of the contrastive loss over the training
epochs is depicted in the graph 7 below. As illustrated,
the loss consistently decreases, indicating that the model is
learning effective representations over time.

Figure 7. Contrastive loss over 20 epochs, demonstrating the
model’s learning progression.

This graph validates the effectiveness of our training
regime, showing a clear trend of improvement as the model
becomes better at distinguishing between positive and neg-
ative pairs.

5. Experiments and Results
In our pursuit to replicate and adapt the SimCLR frame-

work for a downscaled model and dataset, we meticulously
followed the methodologies detailed in the original Sim-
CLR paper [4]. We aimed to investigate whether the bene-
fits of contrastive learning could be preserved when applied
to a smaller-scale problem, such as the CIFAR-10 dataset,
using a ResNet18 model as opposed to the larger ResNet50.

5.1. Model Evaluation

To evaluate our model, we employed two main visualiza-
tion techniques: t-SNE and nearest neighbor search. These
methods provided us with insights into the quality of the
features learned by our model.

5.1.1 t-SNE Visualization

t-Distributed Stochastic Neighbor Embedding [9] (t-SNE)
allowed us to visualize the high-dimensional feature vectors
in a two-dimensional space. The resultant plots in figure 8,
however, did not exhibit well-defined clusters for different
classes as anticipated, indicating that our model may not be
learning as discriminative features as desired.
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Figure 8. t-SNE visualization of learned representations.

5.1.2 Nearest Neighbor Search

Similarly, the nearest neighbor search was employed to as-
sess the feature representation capabilities of the model.
The idea was to verify if the representations could cluster
similar images together. As depicted in figure 9, the closest
images were not always of the same class, suggesting that
the feature space was not separating the classes effectively.

Figure 9. Nearest neighbor search results.

5.2. Discussion

The experimental outcomes revealed that our down-
scaled adaptation of the SimCLR framework was unable to
replicate the results of the original study. A closer examina-
tion suggests that this disparity could stem from the intrinsic
differences in model complexity and dataset characteristics.

Firstly, the choice of ResNet18 as the backbone for our
contrastive learning model introduces a reduction in com-
plexity when contrasted with the original ResNet50 archi-
tecture. The impact of this simplification is twofold: it not
only restricts the model’s capacity to encode nuanced fea-
tures.

Furthermore, the CIFAR-10 dataset, with its lower res-
olution and reduced variability in comparison to the ex-
pansive and diverse ImageNet collection, presents a less
challenging landscape for the model. Consequently, the
learned representations may lack the sophistication neces-
sary to generalize across a broader spectrum of visual do-

mains.
Lastly, the optimization of the model was constrained

by the computational resources at our disposal, leading to a
truncated training regimen and limited hyperparameter ex-
ploration. The necessity for extended training durations,
larger batch sizes emerges as a critical consideration for fu-
ture researches in this domain.

Our work also aimed to determine if these embeddings
can enhance classification accuracy, providing valuable in-
sights for deploying contrastive learning in limited-resource
scenarios.

6. Comparative analysis

6.1. Multi Layer Perceptron Head

The Multi Layer Perceptron (MLP) head is a pivotal
component of our contrastive learning framework. It serves
as the classification layer that maps the representations
learned by the encoder to the label space.

6.1.1 Baseline Model

The baseline MLP model is designed as a straightforward
feedforward neural network, crucial for establishing a ref-
erence point for performance assessment. It comprises
a flattening layer that transforms the input into a one-
dimensional tensor, followed by a fully connected layer
(fc1) that maps the flattened input to a hidden layer with
a specified size. The ReLU activation function introduces
non-linearity, essential for complex pattern recognition. Fi-
nally, another fully connected layer (fc2) projects the fea-
tures from the hidden layer to the output size, correspond-
ing to the number of classes in the dataset. The simplicity
of this architecture is deliberate, providing a clear bench-
mark against which we measure the efficacy of more com-
plex models.

6.1.2 Enhanced CLR Model

In contrast to the baseline, our enhanced CLR model in-
tegrates the embeddings obtained from our SimCLR-based
self-supervised learning framework. The MLP head in this
configuration receives a rich, abstract representation of the
input images, encoded by the base ResNet model and re-
fined through contrastive learning. This approach leverages
the distilled knowledge encapsulated within these embed-
dings, aiming to amplify the model’s ability to discern and
classify images with a higher degree of accuracy. The ex-
pectation is that the enhanced model will not only outper-
form the baseline in terms of classification metrics but also
demonstrate the practical value of self-supervised learning
in real-world applications.
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6.2. Classification Task

The classification task aimed to leverage a Multi-Layer
Perceptron (MLP) to categorize images from the CIFAR-
10 dataset (60 000 images). We explored the performance
impact of different input representations on the classifica-
tion accuracy. These representations included raw images,
embeddings generated by our downscaled SimCLR model,
principal component analysis (PCA) reduced embeddings,
and t-Distributed Stochastic Neighbor Embedding (t-SNE)
reduced representations.

6.3. Results

The comparative analysis of classification accuracies is
depicted in the bar chart below (see figure 10). The baseline
MLP model, trained directly on raw image data, achieved
a test accuracy of 35.77%, setting a foundational bench-
mark for classification performance. Notably, the use of
embeddings from our SimCLR model as input to the MLP
resulted in a marked improvement, with accuracy climbing
to 48.63%. This enhancement underscores the effectiveness
of contrastive learning in extracting meaningful feature rep-
resentations.

Conversely, the MLP trained on PCA-reduced embed-
dings attained a lower accuracy of 39.67%, indicating a po-
tential loss of critical information during dimensionality re-
duction. Similarly, t-SNE embeddings, which further com-
press the feature space into a two-dimensional manifold,
yielded an accuracy of 28.72%. This suggests that the na-
ture of the transformation and the level of dimensionality
reduction critically influence the classification capabilities
of the MLP.

Figure 10. Test accuracy of the MLP model using different input
representations. The comparison highlights the impact of feature
extraction and dimensionality reduction techniques on classifica-
tion performance.

These experiments show that the embeddings from our
adapted SimCLR model significantly elevate the MLP’s
performance, validating our approach’s effectiveness in this
specific downstream task of image classification.

6.4. Batch Size Experiments

The size of the batch during training is a critical hyper-
parameter in the field of contrastive learning. As outlined in
the seminal SimCLR paper, larger batch sizes tend to pro-
vide more accurate and stable gradients, potentially leading
to better learned representations.

6.4.1 Methodology

In our experiments, we explored the impact of various batch
sizes on the performance of our contrastive learning model.
We incrementally adjusted the batch size, observing the cor-
responding changes in the loss landscape and the model’s
ability to generalize from the learned representations. This
iterative process was key to determining the optimal balance
between computational resources and learning efficacy.

6.4.2 Results

Figure 11. Test accuracies of CLR models with varying batch sizes
(The number represents the power of 2 of batch size).

The results, illustrated in figure 11, demonstrate a clear
trend: larger batch sizes are associated with increased test
accuracy. This observation is consistent with the assertions
made in the original SimCLR research, reinforcing the no-
tion that more extensive batches facilitate superior feature
learning. However, it is important to note that increasing
batch sizes can overcharge the computational load, often
resulting in GPU memory constraints. This limitation pre-
vented us from replicating the larger batch sizes utilized in
the original experiments (more than 8192).

7. Vision Transformers
In recent years, transformer models have revolutionized

the field of Machine Learning. Originally introduced by
Vaswani et al. [12], transformers have become the corner-
stone of state-of-the-art models, showcasing unprecedented
performance in various tasks such as language translation,
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text summarization. In computer vision, Dosovitskiy et
al. [5] introduced Vision Transformer (ViT) as an alter-
native to convolutional neural networks. They necessitate
higher computational resources and demand a larger vol-
ume of training data. By treating images as sequences of
patches and leveraging self-attention mechanisms, ViT ex-
cels at capturing long-range dependencies, offering an un-
derstanding of the visual content. In DINO by Mathilde
Caron et al. [3], they make the observation that features ex-
tracted by self-supervised ViT contain explicit information
about the semantic segmentation of an image. This pushes
us to experiment with ViT to extract representations. We re-
place ResNet18 by a ViT in the encoder part. We train three
ViT models on four classes of ImageNet dataset (5200 im-
ages) with the same hyperparameters, except the number of
attention heads and the number of layers that we vary as
shown in table 1. A batch size of 40 and a patch size of 16,
chosen for divisibility by 224. The learning rate was set to
0.0001 over 100 epochs for each training. Additionally, we
set dropout rate to 0.2 and embedding dimension to 768.

Name Heads Layers Loss Train Time
ViT 6 6 6 6 3.26→ 2.70 10h 52m
ViT 8 8 8 8 3.31→ 2.71 11h 41m
ViT 12 12 12 12 3.45→ 2.74 13h 28m

Table 1. Effect of different configurations on model performance.

From table 1, and observing the loss from the first epoch
to epoch 100, we think that depth and width of a Vision
Transformer does not have any impact on training with a
small dataset. Because the three models converge to the
same loss value after 100 epochs of training. Moreover,
We do a fine-tuning step on training data of CIFAR-10 for
11 epochs, and evaluating the model on the validation data
of CIFAR-10. For this, we used two linear layers, with a
ReLU activation on the first layer. In the fine-tuning step,
we used Adam optimizer, and we set the learning rate to
0.0001. The results of the accuracy on test data are shown
in figure 12. Our embeddings consistently yield favorable
outcomes when compared with employing the entire image.
The baseline MLP operates by taking the complete image
as input, represented as (batch size, 224, 224). In contrast,
the added MLP in the ViT-based models receive a represen-
tation of the input image with dimensions (batch size, 784)
where 784 is the embedding dimension. Finally, these mod-
els achieved nearly identical outcomes, with a slight edge
observed in favor of the ViT 6 6 model as shown in figure
12.

8. Future Research Directions
Subsequent studies may aim to refine the efficiency of

self-supervised learning in contexts with limited data or

Figure 12. Test accuracies with ViT-based models. We vary the
number of attention heads and the number of layers.

computational resources. The exploration of alternative
architectures, augmentation strategies and hyperparameter
optimization, could further advance the field. Ultimately,
applying these findings to real-world scenarios will under-
score the utility of such methods in practical applications.

9. Conclusion
In this paper, we have embarked on an exploratory

journey to adapt the SimCLR framework for more
resource-constrained environments, specifically targeting
the CIFAR-10 dataset with a ResNet18 encoder. Our in-
vestigation was motivated by the desire to democratize self-
supervised learning, making it accessible and practical for
scenarios where computational resources are limited.

Throughout our research, we examined the impact of
various hyperparameters on model performance, with a par-
ticular focus on the role of batch size in contrastive learn-
ing. Our experiments provided insightful revelations about
the trade-offs between computational demand and learning
efficacy, highlighting the challenges of GPU memory con-
straints when scaling batch sizes.

Furthermore, we ventured beyond traditional architec-
tures by integrating a Vision Transformer with our con-
trastive learning framework. This innovative approach
yielded promising results, suggesting a potential new direc-
tion in our research in self-supervised learning.

Our efforts culminated in valuable contributions to the
understanding of self-supervised learning within the con-
straints of smaller datasets and computational resources.
While we achieved a certain level of success in our objec-
tives, the journey does not conclude here. The findings from
our study lay the groundwork for subsequent research, invit-
ing further exploration into the optimization of contrastive
learning frameworks for various applications.

In closing, we affirm the significance of self-supervised
learning as a potent tool for feature extraction and represen-

8



tation learning, particularly in fields where data is scarce or
the cost of annotation is prohibitive. As the field continues
to evolve, we anticipate a future where these methodolo-
gies are not just the privilege of high-resource settings but
become a staple across diverse computational landscapes.
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